



<sup>1</sup>Reino Laatikainen, Pekka Laatikainen and Henri Martonen <sup>2</sup>USP Team: Sunil Paudel, Christine Castagna, Jana Brcek and Ben Shapiro <sup>3</sup>UEF:Tuulia Tynkkynen

<sup>1</sup>Spin Discoveries Ltd., Kuopio, Finland

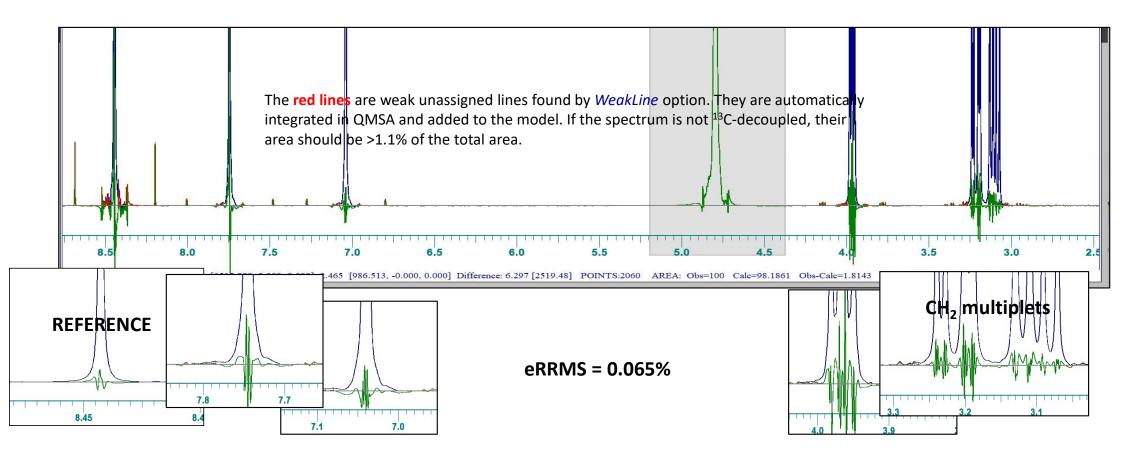
<sup>2</sup>USP: US Pharmacopeia, USA

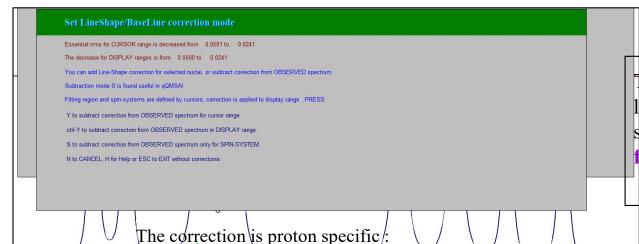
<sup>3</sup>UEF: University of Eastern Finland

### ChemAdder line-shape can be composed from of the following terms:

- Lorentzian(%).
- Gaussian(%, global or proton specific).
- Asymmetry (%, global or proton specific).
- Dispersion (%, not very useful).
- Out-of-Coil (Hz), useful for benchtop and if the spectrum contains strong or broad signals.
- Virtual couplings (Hz, nuclei specific), if there are long-range couplings (like in steroids) the origin of which is unclear.
- Isotope shifts (<sup>13</sup>C, Cl, Si, S) (ppm), if the H, <sup>13</sup>C couplings are removed by decoupling, there remain <sup>13</sup>C isotope shifts, which may lead to a visible 1-3% shoulder at the high field (right) sides of the proton signals. Significant, for example, for glucose in biofluids.
- Fourier correction (33 terms) for observed-calculated difference, can be used to decrease RRMS and to reveal impurity signals under the target compound spectrum.
- Some essential signals, like TMS, TSP, DSS, Maleic acid, dimethyl sulfone, may have a special isotopic structure demanding a specific QM model ...see QMSA Letters.

#### Fourier correction\* of observed-calculated difference spectrum:


The **observed-calculated spectrum** can be fitted by n-terms (max. 33/proton) **Fourier function**, which can be then subtracted from the observed spectrum.


If the **Fourier correction** was the same for every line and the QM model perfect (= all the long-range couplings correct, the line-shape same for every line or species, etc), the subtraction should lead to zero **difference!** Unfortunately, this is seldom the case, but the subtraction typically leads to 40-70% decrease in eRRMS.

In principle, the subtraction should not remove impurity signals! However, if the correction is done for one multiplet, it may decrease the eRRMS by >90%, but at the same time it may remove the impurity signals hiding under the multiplet!!

<sup>\*</sup>The ChemAdder Fourier correction' is more than a straightforward Fourier expansion and is under tuning.

#### Histidine spectrum after asymmetrical Lorentzian-Gaussian TLS-fitting:

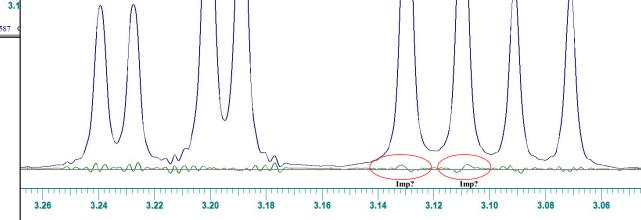




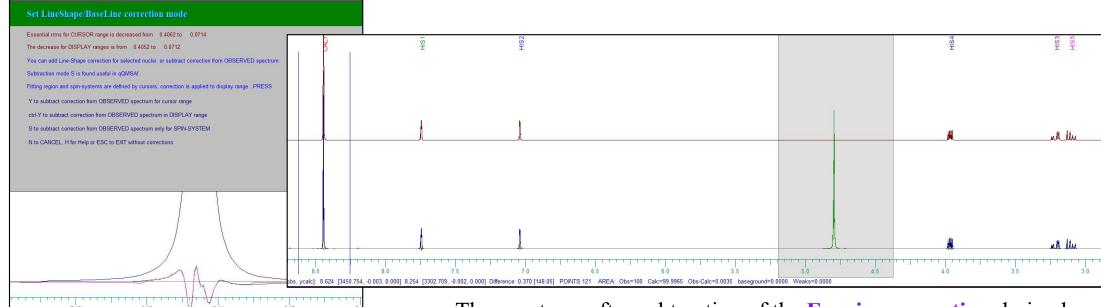
The CH<sub>2</sub> signals **observed-calculated difference** after line-shape optimization. The **Fourier correction** shows the fit of the **difference** with a 33 terms **Fourier function**:

3.22 3.20 3.18 3.16 3.14 3.12 3.1

3.300 [1320.413, 0.007, 0.002] 3.014 [1206.092, -0.001, 0.002] Difference: 0.286 [114.32] POINTS:93 AREA: Obs=100 Calc=98.7587


The CH<sub>2</sub> signals and the **difference** after subtraction of the **Fourier correction**:

#### eRRMS = 0.024%


Here different Fourier functions were optimized for the two protons). The correction is somewhat proton specific.

However (next page)...

3.26

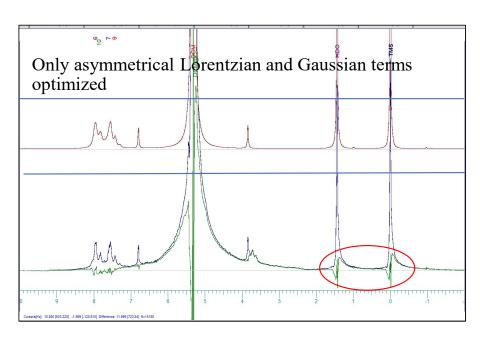


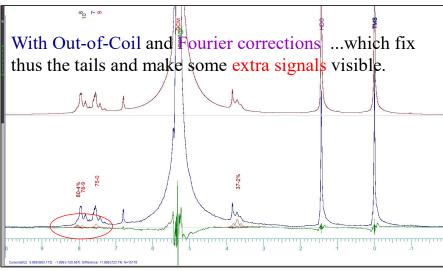
..a fair decrease of RRMS is obtained also when the **correction** is derived from a well-defined signal (here the reference signal) and then applied for all the lines:



The reference **Fourier correction:** eRRMS from 0.40 to 0.07%

The spectrum after subtraction of the Fourier correction derived from the reference signal:

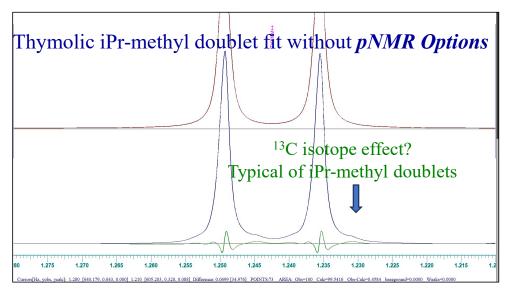

eRRMS decreased from 0.065 to 0.032%


### Out-of-coil correction (OoC)

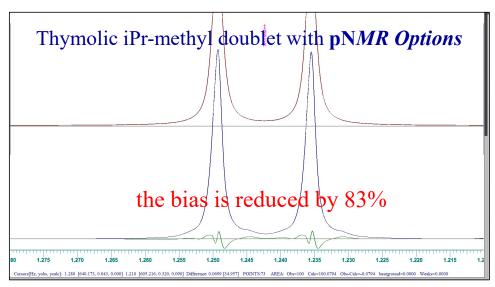
The correction is actual if a spectrum contains strong asymmetrical and broad lines on the tails of which the target signals lie, and which cannot be satisfactorily described by the asymmetrical Lorentzian & Gaussian function. The feature is supposed to be especially important with benchtop spectra.

The observed-calculated difference spectrum can be fitted in ChemAdder by a 10 terms non-symmetrical function, which can be then subtracted from the observed spectrum. The correction compensates also a part of isotope shift shoulders.

From R. Laatikainen<sup>a</sup>, S. Paudel<sup>b</sup>, B. Shapiro<sup>b</sup>, J. Zhang <sup>c</sup>, J. Hein<sup>c</sup> and P. Laatikainen<sup>a</sup>, *ChemAdderAnatomy of a 60 MHz Benchtop NMR Spectrum – Dissection*, QMSA Letters

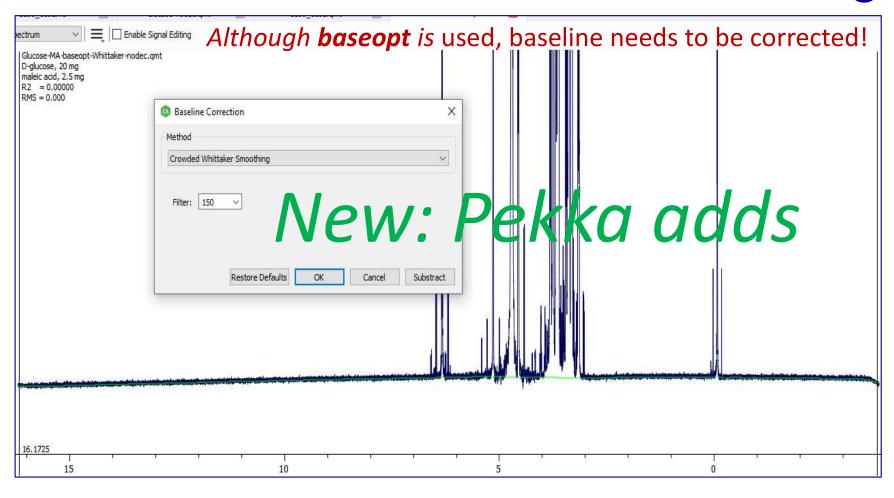






# PurityNMR and IT-supported qQMSA

For example, long-range <sup>13</sup>C couplings and isotope shifts lead to structures which cannot be fitted by even the most sophisticated line-shapes. This may lead to bias of a few percent bias in PURITY%.

The ChemAdder solution is *IT Supported qQMSA!* 




The observed-calculated area = 0.46% of the calculated area



The observed-calculated area = 0.08% of the calculated area

# Whittaker baseline correction & smoothing



# Isotope effects of <sup>13</sup>C, <sup>29,31</sup>Si, <sup>35,37</sup>Cl and <sup>34</sup>S

- If the H,<sup>13</sup>C couplings are removed by decoupling, there remain <sup>13</sup>C isotope shifts, which may lead to a visible 1-3% shoulder at the high field (right) sides of the proton signals.

  Significant, for example, for glucose in biofluids.

  Maleic acid <sup>13</sup>C LongRange
- Some important signals, like TMS, TSP, DSS, Maleic acid, dimethyl sulfone, may have a special isotopic structure demanding a specific QM model ...see QMSA Letters.

## Virtual Couplings

- Virtual couplings, if there are long-range couplings (like in steroids) the origin of which is unclear.
- In ChemAdder one can define a coupling that splits all the lines of a nuclei to a regular Pascalian doublets, triplets or quartets, without defining the origin of the coupling.
- In ChemAdder one can define a coupling that splits all the lines of a nuclei to a regular Pascalian doublets, triplets or quartets, without defining the origin of the coupling.